IM+io Fachmagazin, Ausgabe 2/2025
Virtuelle Körper, echte Chancen – Für eine Medizin, die Geschlecht mitdenkt
Literaturhinweise
Steven Cen, M. Gebregziabher, Saeed Moazami, Christina J. Azevedo, Daniel Pelletier (2023). Toward precision medicine using a “digital twin” approach: modeling the onset of disease-specific brain atrophy in individuals with multiple sclerosis. Scientific Reports
Steven Cen, M. Gebregziabher, Saeed Moazami, Christina J. Azevedo, Daniel Pelletier (2023). Toward precision medicine using a “digital twin” approach: modeling the onset of disease-specific brain atrophy in individuals with multiple sclerosis. Scientific Reports
F. Gu, A. J. Meyer, F. Jezek, S. Zhang, T. Catalan, and 13 more (2024). Identification of Digital Twins to Guide Interpretable AI for Diagnosis and Prognosis in Heart Failure. medRxiv
Shashank R Joshi, P. Shamanna, M. Dharmalingam, A. Vadavi, A. Keshavamurthy, and 2 more (2023). Digital Twin Enabled Personalized Nutrition Improves Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes: Results of a 1-Year Randomized Controlled Study. Endocrine Practice
Jae Kwon Kim, Sun Jung Lee, Sungeun Hong, I. Choi (2022). Machine Learning-Based Digital Twin System for Predicting the Progression of Prostate Cancer. Social Science Research Network
Paulina Leszczełowska, Magdalena Mazur-Milecka, Natalia Kowalczyk, Milena Sobotka (2024). Maternal Health Risk Assessment using Digital Twin Application. International Conference on Human System Interaction
Caroline Criado Perez (2019). Invisible Women: Exposing Data Bias in a World Designed for Men. Chatto & Windus, London.
M. Turner, S. Millar, C. Kusiak, F. D. Fuller, J. Walsh, and 1 more (2024). P505 Accelerating Crohn’s Disease clinical trials using generative artificial intelligence. Journal of Crohn’s & Colitis
ZDF (2024). Frauenleiden: Wenn Medizin weibliche Symptome übersieht. Online abrufbar unter: https://www.zdf.de/nachrichten/panorama/frauenleiden-medizin-ungesehen-100.html